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Abstract. The increasing need for prosthetic hands for people with disabilities is one reason for 
innovation in the field of prosthetic hands to create the best prosthetic hand technology. In the design 
of EMG-based prosthetic hands, this is determined by several things, among others, the selection of 
features. The selection of the right features will determine the accuracy of the prosthetic hand 
Therefore, the purpose of this study is to analysis the time domain feature to obtain the best feature 
in classifying the hand motion. The contribution of this work is able to detect 4 movements in real 
time, namely hand close, flexion, extension, and relax. The Electromyograph signal is tapped using 
an electromyograph (EMG) dry electrode sensor in which there is a circuit of EMG instrumentation 
amplifier. Furthermore, the analog EMG signal data is processed through the ADC (Analog to Digital 
Converter) by using MCP3008 device. EMG signal data is processed in Raspberry Pi. A feature 
extraction process is applied to reduce data and determine the characteristics of each hand movement. 
Feature extraction used is MAV (mean absolute value), SSI (sign slope integral), VAR (variance), 
and RMS (root mean square). From the results of the four-time domain feature, then the best feature 
extraction is determined using scatter plot and Euclidean distance. The results that have been carried 
out on ten people with each person doing ten sets of movements (hand close, flexion, extension, 
relax), showing the best Euclidean distance results, is the RMS feature, with a value of 2608.07. This 
data is the result of the best feature extraction analysis through the method of calculating the distance 
of feature extraction data using Euclidean distance. This analysis of time domain feature is expected 
to be useful for further experiment in machine learning implementation so that it can be obtained an 
effective prosthetic hand. 

Introduction 
Persons with disabilities with physical limitations have limitations in carrying out daily activities, 
such as for work, sports, and physical activities. With these limitations, we need tools that can support 
the activities of persons with disabilities in carrying out daily activities. 0. With advances in 
increasingly sophisticated technology, assistive devices for people with disabilities are also made 
with the latest and increasingly sophisticated technology, especially for prosthetic hand aids that are 
used for people with disabilities with physical disabilities. Based on the results of the 2015 Inter-
Census Population Survey (SUPAS) [1], the percentage of people over the age of 10 who have 
difficulty using or moving their hands or fingers is 2.61 percent, with a condition of 1.08 percent of 
men and 1.53 percent of women with gender. By looking at these data, the need for robot hand tools 
or prosthetic hands in Indonesia should be increasingly increased. The development of prosthetic 
hand technology is increasingly sophisticated. Increasingly sophisticated technology is certainly 
supported in terms of high costs. The development of prosthetic hands in Indonesia must certainly be 
supported by costs that are in accordance with the conditions of people in developing countries. In 
contrast to the development of prosthetic hands that exist abroad, which uses advanced technology at 
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a high cost. Prosthetic hand technology in Indonesia is expected to have a sophisticated design, easy 
to use, and supported by affordable costs. 

In several studies, mostly, prosthetic hands are controlled using the EMG signal. In some studies, 
EMG signals are processed conventionally by comparing a certain motion based on a threshold or by 
looking at its amplitude. The difference in a movement when the muscles contract affects the size of 
the amplitude produced. However, identification of EMG signals using amplitude cannot detect any 
differences in motion because it only utilizes differences in reference voltages. In the study [2] 
discusses prosthetic hand control using a threshold and is able to detect the movement of 5 fingers. 
However, it still uses disposable electrodes for EMG leads. In the study [3] discusses making 
inexpensive prosthetic hands with EMG signal control, but only detects movement between the thumb 
and the other four fingers. In the study [4] discusses prosthetic hand control using EMG signals with 
the ability to detect objects to be held. But can only do grasping movements. In the study [5] discusses 
prosthetic hand control via EMG signals with RMS feature extraction, but the result of feature 
extraction is determined threshold distinguish two movements. Research [6] discusses prosthetic hand 
control using EMG signals by feature extraction and classification. However, it can only detect three 
movements and use disposable electrodes. The research [7] discusses prosthetic hand control using 
EMG signals with feature extraction processing and classification, but can only detect slight 
movements. Some subsequent studies discuss prosthetic hand control by feature extraction. In various 
studies discuss the comparison of various extraction features used in EMG signal processing. The 
extraction feature used is based on the time domain. In the comparison of various time-domain 
extraction features, the accuracy level varies with each movement performed. However, the extraction 
processing is done on a personal computer or on a microcontroller, which cannot be used directly and 
is portable. Data from the EMG signal is entered into a computer or microcontroller and then 
processed and identified its characteristics and accuracy. Accuracy results used for prosthetic hand 
control have not yet entered the embedded system, which is then used online for a portable control 
device. In the study [8] discusses the processing of EMG signal feature extraction to analyze the 
contraction strength of patients with amputation hands. But not they are yet used for embedded 
systems and control. Research [9] discusses prosthetic hand control using EMG signals with feature 
extraction processing but uses a complex wireless system and electrodes. Research [10] discusses 
EMG signal processing using feature extraction but has not yet been used in embedded systems. 
Research [11] discusses EMG signal processing using feature extraction for 6 movements, but not 
yet used in embedded systems. Research [12] discusses EMG signal processing using time-domain 
feature extraction but has not yet been applied to embedded systems. Research [13] discusses EMG 
signal processing using time-domain feature extraction and then analyzed for classification. But not 
she is yet applied to prosthetic hand control and embedded systems. In research [14] it discusses EMG 
signal processing using time-domain feature extraction but only analyzed using neural networks not 
yet used for control devices. 

Based on the previous problems, the purpose of this study is to analyse the EMG features in order 
to recognize the hand motion and obtained the best feature. Additionally, this study identifies four 
movements, namely hand close, relax, flexion, and extension. The development was carried out by 
processing the two EMG channels and extract the EMG signal using the time-domain feature. 
Additionally, in this study, we result in the characteristics of each hand close, relax, flexion, and 
extension movements based on the EMG features. Furthermore, the feature extraction results are 
processed using scatter and Euclidean distance to determine the best feature extraction. 

The rest of this paper is composed of five sections; namely, section introduction described the 
problem and state of the art method; section two describes the material and methods used in this 
study. The result of this study was explained in result section. Section discussion showed the 
interpretation and study comparison. Finally, section five concluded the overall study. 
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Materials and Methods 
Experimental Setup. In this study, EMG signal data collection was performed on ten subjects 

aged 21-22 years. Subjects were taken randomly, and each subject was doing ten sets of movements 
starting from HC (Hand Close), FL (Flexion), EX (Extension), and relax at every movement 
transition. A set of movements takes 19 seconds. The EMG signal is then tapped by a dry electrode 
and enters the MCP3008 ADC IC for processing analog data into digital data, then enters the 
Raspberry for feature extraction processing (Figure 1). 

 

Fig. 1. Design of EMG Signal Processing Materials and Device 
In this study, the recording of the EMG signal used dry electrode EMG Sensor OY Motion SKU: 
SEN0240 (DF Robot, China). Notch filter to reduce the frequency noise 50 Hz. Raspberry Pi (Model 
3B+, United Kingdom) with processor Broadcom BCM2837B0 for data processing. Raspbian Buster 
Linux operating system (last installed in version February 2020). IC MCP3008 is used to convert data 
from analog to digital. The external ADC was required because the Raspberry Pi did not support the 
ADC feature.  

  
Fig. 2. EMG Sensor OY Motion 

Figure 2 shows the dry electrode along with the front amplifier circuit. In this study, the dry electrode 
was chosen because it can be used repeatedly so that it is more economical during development. 
In Figure 2, an OY Motion EMG Sensor with SKU: SEN0240 was produced by DF Robot. This 
sensor consists of a pair of dry electrodes and an instrumentation circuit. This sensor requires a 5V 
power supply and ground. Additionally, the output of this circuit produces an analog data. In this 
study, we used two sets of EMG sensors because we collected the EMG signal from two muscle 
groups. 
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Figure 3 shows the interfacing circuit of notch filters and ADC on the Raspberry Pi board. This 
shield circuit is integrated Raspberries with other supporting circuits. This shield is used to make an 
easy connection to the raspberry GPIO pin. 

 

Fig. 3. Raspberry, ADC, and notch filter 

In Figure 3, the passive notch filters circuit and ADC were placed on processing analog EMG sensors 
and then converted into digital data. The Raspberry Pi does not provide ADC features; therefore, in 
this study, an ADC MCP3008 must be added. In Figure 3, at the bottom of the shield circuit, the 
Raspberry Pi type B + board was placed. 

Experiment. In this study, researchers processed the EMG signal for feature extraction. In this 
stage, the feature extraction used is based on time-domain using MAV, SSI, VAR, RMS [12][15]. 
Furthermore, after the feature extraction process, the distribution of data was viewed using scatter. 
Moreover, the separability of the feature was calculated using Euclidean distance. Figure 4 shows the 
placement of the electrodes in the forearm. As seen in the figure, the type of electrode used is a dry 
electrode. 

 

Fig. 4. Dry Electrode Placement 
In Figure 4, is the placement of dry electrodes on the wrist flexor and extensor muscle. This research 
uses a 2-channel system so that there are two electrodes attached. 
MAV (Mean Absolute Value) is a formula for calculating average values and windowing values 
calculated in absolute values [6],[12],[13]. The MAV calculation formula is as follows. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
� ⃒ 𝑥𝑥𝑖𝑖 ⃒

𝑁𝑁

𝐼𝐼=1
      (1) 

SSI (Simple Square Integral) can be defined as an energy index. The value can be calculated by the 
equation [16],[12],[13],[17]. 

SSI = ∑ 𝑥𝑥𝑥𝑥²𝑁𝑁
𝑖𝑖=1        (2) 
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VAR (Variance of EMG) is a strength index. VAR is defined as the average value of the square of 
the deviation. The average value of the EMG signal is close to zero. The formula of VAR is as follows 
[16],[12],[17]. 

VAR = 1
𝑁𝑁−1

∑ 𝑥𝑥𝑥𝑥²𝑁𝑁
𝑖𝑖=1       (3) 

RMS (Root Mean Square) is the relationship between constant force and contraction without fatigue 
[16],[12],[13],[11]. The RMS formula is as follows. 

RMS =�1
𝑁𝑁
∑ 𝑥𝑥𝑥𝑥²𝑁𝑁
𝑖𝑖=1       (4) 

Euclidean Distance is a method of analyzing data by calculating the distance between data. In this 
study, using two-dimensional distance Euclidean data analysis methods. The formula for calculating 
Euclidean distance is as follows  [18],[19],[20],[21]. 

𝑑𝑑 = � ∑ (𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑖𝑖)2𝑛𝑛
𝑖𝑖=1       (5) 

The Diagram Block. Figure 5 shows the diagram block of this study. It consists of three parts, 
namely, input, process, and output. This block diagram explains the control mechanism in research. 
First of all, the EMG signal is collected by a dry electrode (OY Motion, SKU SEN 0240), and then 
the EMG signal entered into the instrumentation amplifier (OY Motion, SKU SEN 0240). Moreover, 
the dry electrodes and instrumentation amplifier produced an analog signal. In order to reduce the  
50 Hz interference, the notch filter is applied. Analog to Digital Converter (ADC) MCP 3008A 
functions to convert analog data into digital data. This ADC was connected to Raspberry through 
serial communication (transmitter and receiver pin). The EMG signal is extracted using time-domain 
features. This feature extraction process is performed to obtain the EMG feature, which represents 
the flexion, extension, grasp, and relaxes motion. The feature extraction process was carried out in 
the Raspberry system. In this study, four-time domain features were used to extract the EMG signal 
(MAV, SSI, VAR, and RMS).  Then the feature extraction results are processed using a scatter plot 
to see the clustering of data. In this stage, therefore, we can find the best feature for the classification 
process. Furthermore, Euclidean distance was applied to measure the distance between the clustering 
data in each feature extraction. Based on the Euclidean distance value, it can be seen as the best 
feature extraction for the classifier machine. 

Dry Electrode 
(OYMotion 

SKU:SEN 0240)

Instrumentation 
EMG 

(OYMotion 
SKU:SEN 0240)

Analog
Notch Filter

ADC
(MCP3008)

Feature 
Extraction

(MAV, RMS, 
SSI, VAR)

Scatter Plot of 
Feature 

Extraction

Euclidean 
Distance

Calculation

Data Analysis 
Feature 

Extraction 
 

Fig. 5. The diagram blocks of data acquisition and feature extraction process 
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END
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Data Analysis 
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Fig. 6. The Flowchart EMG signal processing and extraction feature 

The Flowchart. Figure 6 shows a flow chart of the data acquisition process and feature extraction 
of the EMG signal tapped at two measurement points. In the data acquisition process, the ADC 
records the EMG analog signal to be converted into digital form. The ADC recording process is 
controlled via the Raspberry Pi B +. The data collection process was carried out with a sampling 
frequency of 1000 Hz (1 ms period). EMG data from the two channels is stored in a variable for 
further analysis or feature extraction. In the feature extraction process option, the EMG signal is 
segmented every 100 ms, which is then carried out by the feature extraction process. 

The feature extraction process is carried out sequentially, starting from the MAV, SSI, VAR, and 
RMS features. Furthermore, to see the grouping of features based on movement (flexion, extension, 
graph, and relax), a scatter plot process is carried out for each pair of movements and the variations 
of the existing features. 
The distance between groups on a scatter plot can be measured using Euclidean Distance. 
Furthermore, all results are analyzed to get recommendations for the right features for the pattern 
recognition process on machine learning resistance. 

Circuit. This section will reveal about hardware. Additionally, this part will describe in detail the 
circuit used for data acquisition purposes. This section consists of discussing the notch filter circuit, 
ADC, and the interface to the Raspberry Pi. 

Circuit of Notch Filter. In general, Figure 7 describes a passive notch filter circuit that is built 
using resistor and capacitor components. The output of the two EMG sensors enters the passive notch 
filter circuit with 49 Hz cut-off frequency. The notch filter functions to cut or reduce at one particular 
frequency that is 50 Hz frequency with attenuation of 60 dB. Both passive notch filter circuits have 
the same cut-off frequency and component values. Furthermore, in this study, the passive notch filter 
is used to suppress the frequency of the line power, which interference with the circuit during the data 
acquisition process with a frequency of 50 HZ. Even though in this study, we powered the circuit 
using a battery; however, the 50 Hz interference coming from the power line always exists. 
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Fig. 7. Circuit of notch filter with frequency cut off 49 Hz 

Raspberry Pi. This section consists of the main circuit, namely the Raspberry Pi 3B + (Figure 8). 
This board is connected to several other supporting circuits, namely led indicator circuits, switch 
circuits, ADC circuits, and servo motor circuits. The LED indicator functions to indicate when the 
Raspberry start to collect the EMG data from ADC for each movement. Additionally, switch buttons 
are used to start and end movements when the system is run online. Moreover, in this study, the 
programming language used is based on Python using a software version 3.6. In order to run the 
program, several libraries were used in this study include Pandas, NumPy, Sklearn, Scatter, and 
Matplotlib. In detail, the circuit configuration is as follows:  

GPIO 17, 22, and 27 are connected to the LED indicators to indicate the movement. GPIO 05 and 
06 are connected to the switch circuit to start and end the program while the system is running online. 
GPIO 19 and 26 are connected to the LED indicator to detect the maximum magnitude of the EMG 
signal during a muscle contraction. The SCL and SDA pins are connected to the PCA9685 servo 
driver. This servo is used to move the prosthetic hand in flexion and extension. 

 

Fig. 8. Circuit of Raspberry Pi for data processing 

Result 
This section will describe the results obtained in the study. In general, this section discusses several 
algorithms, including the data acquisition process algorithm, the feature extraction process, the scatter 
data plot process, and the calculation of the value of Euclidean Distance. 

ADC 
CH1 

ADC 
CH2 

Electrode 
CH1 

Electrode 
CH2 
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Algorithm of ADC EMG and filter digital. This algorithm is used for processing EMG signals 
from analog data into digital data and then filtered using a digital bandpass filter with a cut-off 
frequency of 20-500 Hz. Digital data that enters the raspberries are then processed with a digital filter 
to ensure that the resulting signal is a true EMG signal, with frequency characteristics between  
20-500 Hz. The digital filter used is IIR (Infinite Impulse Response) with order six and the type of 
bandpass filter with cut-off frequencies is 20 and 500 Hz. Then after going through a digital filter, 
the signal enters the windowing phase with 100 ms or per 100 data. The results of windowing are 
then used for the next process, namely feature extraction. 

Algorithm 1: filtering the EMG data using a notch filter. 
Init:  b =[0.78429785289303577; -4.7057871173582146; 11.764467793395536; -
15.685957057860715; 11.764467793395536; -4.7057871173582146;    
0.78429785289303577]; a =[1; -5.5145351211661646; 12.689113056515138; -
15.593635210704097; 10.793296670485377; -3.9893594042308824; 
0.6151231220526282]; orde = 6; range = 100; 
Input: EMGch1; EMGch2 
Output: EMGch1filter; EMGch2filter 
WHILE (LEN(EMGch1filter)<range AND LEN(EMGch2filter)<range) 
FOR n→0 TO orde DO  
xch1[n]= xch1[n-1] 
xch2[n]= xch2[n-1] 
ych1[n]= ych1[n-1] 
ych2[n]= ych2[n-1] 
 FOR n→0 TO orde DO 
  y1=b[n]*xch1[n]-a[n]*ych1[n] 
  ych1+= y1 

y2=b[n]*xch2[n]-a[n]*ych2[n] 
ych2+= y2 
EMGch1filter APPEND (ych1) 
EMGch2filter APPEND (ych2) 
CLEAR (EMGch1filter) 
CLEAR (EMGch2filter) 

END 
 

Algorithm of Extraction Feature. The below algorithm functions to create a new CSV file and 
create a column with a predetermined title to hold the extraction signal data. For the extraction 
formula, directly call the library and entered into the calculation. Data were obtained from the 
previous process of data retrieval, with windowing per 100 data. The time needed for extraction of a 
set of movements is 19 seconds, so the amount of data from one extraction file is 190 for each 
extraction. 

Algorithm 2: Feature extraction process 
Init:  range = 100; 
Input: EMGch1filter; EMGch2filter 
Output: EMGch1mav; EMGch2mav; EMGch1rms; EMGch2rms; EMGch1ssi; EMGch2ssi; 
EMGch1var; EMGch2var 
WHILE (LEN(EMGch1filter)==range AND LEN(EMGch2filter)==range) 
EMGch1mav = MEAN(ABS(EMGch1filter)) 
  EMGch1ssi = SUM(EMGch1filter**2) 
  EMGch1var = SUM(EMGch1filter**2)/(range-1) 
  EMGch1rms = SQRT(SUM(EMGch1filter**2)/(range)) 
  EMGch2mav = MEAN(ABS(EMGch2filter)) 
  EMGch2ssi = SUM(EMGch2filter**2) 
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  EMGch2var = SUM(EMGch2filter**2)/(range-1) 
  EMGch2rms = SQRT(SUM(EMGch2filter**2)/(range)) 
  WRITE (EMGch1mav, EMGch2mav, EMGch1rms, EMGch2rms, EMGch1ssi, 
EMGch2ssi, EMGch1var, EMGch2var) 
END 

Algorithm of Euclidean Distance. Algorithm 3 describes the algorithm for Euclidean distance. 
Euclidean distance program is built using a Python program to calculate the distance between 
movements based on scattering data. Data that has been displayed on the scatter then the distance 
distribution is calculated. 

Algorithm 3: Procedure to calculate the Euclidean Distance 
Init:  EDcount =0; i =0; k =0; 
Input: EMGch1[p1]; EMGch2[p2]; EMGch1[q1]; EMGch2[q2]; 
Output: EDtotal 
WHILE (EDcount <LEN(EMGch1) AND EDcount <LEN(EMGch2)) 
WHILE (i <LEN(EMGch1) AND i <LEN(EMGch2)) 
A = (EMGch1[p1][EDcount], EMGch2[p2][EDcount]) 
B = (EMGch1[q1][i], EMGch2[q2][i]) 
ED = distance.euclidean (A,B) 
 
EDSUM =+ (ED*ED) 
i += 1 
 EDcount += 1 
 i = 0 
 IF (EDcount >= LEN(EMGch1) AND EDcount >= LEN(EMGch2)) 
 THEN EDtotal = SQRT(EDSUM) 
 END 
 

Plotting Scatter. Figure 9 shows the scatter plot for the four-movement patterns. The scatter is 
plotted based on the channel number, type of motion, and EMG features, namely MAV, SSI, RMS, 
and VAR. Generally, each movement represents a different pattern. 
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(a) MAV (b) RMS 

  
(c) SSI (d) VAR 

Fig. 9. The scatter plot from (a) MAV, (b)RMS, (c) SSI, and (d) VAR features 
In Figure 9 (a) is the result of scattering MAV feature extraction. Seen in the picture for the 
distribution of data is quite visible and does not coincide with the data. Figure 9(b) is the result of 
RMS feature extraction. Evidently, it showed that there are some data that coincide or are mixed in 
other areas of movement. However, the euclidean distance value for the highest RMS is due to the 
high amount of data, so it affects the euclidean distance value. Data with high value compared to data 
with coincidence is greater in the number of high-value data. Figure 9(c), and Figure 9(d), are the 
results of SSI and VAR extraction scatter. Both extractions have the same normalization value, so the 
results of the scatter are the same and the same Euclidean distance value. After the data is collected, 
then it is normalized to determine the standard values of all data. If it is not normalized, then data 
comparisons between extractions cannot be made because the range values of each extraction are 
different [22]. 

Euclidean Distance. Table 1 shows the Euclidean distance values of ten subjects, with each 
subject doing ten sets of movements, starting from the preparation (relax), HC (Hand Close),  
FL (Flexion), and EX (Extension). The results of data retrieval are then seen by the distribution of 
the data and calculated the distance of each movement using Euclidean distance (Figure 10). There 
are six possible calculations of euclidean distance between movements, namely HC with FL, HC with 
EX, FL with EX, HC with R, FL with R, and EX with R. The possibility of movement is taken from 
the probability of 4 movements, namely HC (Hand Close), FL (Flexion), EX (Extension) and Relax. 
All possible gestures apply to each feature extraction. After the sixth data of possible movement is 
collected, then the total distance of data distribution is calculated in each feature extraction and 
produces the total in the rightmost column.  
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Table 1 The value Euclidean distance from feature extraction with 6 possible hand movement 

No. Feature 
Extraction 

Hand Movement 
HC-FL HC-EX FL-EX HC-R FL-R EX-R TOTAL 

1. MAV 373.15 387.465 589.835 318.112 422.863 460.364 2551.79 
2. RMS 379.714 398.989 597.556 329.946 430.25 471.612 2608.07 
3. VAR 220.605 202.511 304.533 90.8351 224.281 209.622 1252.39 
4. SSI 220.605 202.511 304.533 90.8351 224.281 209.622 1252.39 

 
Fig. 10. Euclidean Distance with six-position of hand movement 

Discussion 
In this study, there is a difference between the amount of data from the ADC process with the actual 
sampling data, where the –data generated for a set of movements for 19 seconds is 18.539, while the 
data should be 19000 with a sampling time of 1000 ms. The resulting difference of 461 data is then 
calculated with an error rate of 2.43%. For feature extraction with a windowing of 100 ms, it should 
produce 190 data amounts in 1 second. However, this study only produced 187-188 data for each 
feature extraction. Then the difference in the amount of extraction data is calculated and produces an 
error of 2-3% for each feature extraction data. The error value is due to the speed of processing the 
feature extraction by the raspberry processor, which is unable to reach the actual data.  

Table 1 is the result of data separability values calculated using Euclidean distance. The data shows 
the value of the distance of data separations between 6 possible movements (HC-FL, HC-EX,  
FL-EX, HC-R, FL-R, EX-R) for each feature extraction. From Table 1, it appears the total value 
obtained from the sum of all possible motions in one feature extraction. The total value is then 
compared. Figure 10 shows a graph of Euclidean distance obtained from the data in table 1. The graph 
aims to facilitate the comparison of the results of Euclidean distance in each feature extraction by 
looking at six possible movements. There is a total overall graph to illustrate the number of Euclidean 
distance values for each feature extraction. Red colour charts are MAV, yellow RMS, green VAR, 
and blue SSI. 

The largest euclidean distance value is the RMS feature extraction with a value of 2608.07, 
followed by the MAV feature extraction with a value of 2551.79 and the lowest value for the 
extraction of the SSI and VAR features with the same value of 1252.39. In research [13] discusses 
the comparison of time-domain feature extraction by processing the KNN and SVM classification 
algorithm with matrix confusion. The study [20] discusses the use of the Euclidean Distance method 
used to analyze the index of muscle fatigue during contractions. Whereas in this study, the euclidean 
distance was used to determine the best feature extraction from EMG signals. 
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We have discussed the effect of time domain feature to extract the EMG signal. However, so far, 
we did not consider the effect of muscle fatigue in the EMG signal. Evidently, muscle fatigue could 
effect the EMG signal in frequency and amplitude [23]. 

Conclusion 
The purpose of this study was to determine the best time domain feature for four hand motion. The 
time-domain features used in this study are MAV, SSI, VAR, RMS. Furthermore, the highest 
Euclidean distance values indicate the best feature. In this study, we found that the highest Euclidean 
distance value is the RMS feature extraction (ED=2608.07). Further experimental investigations are 
needed to look for comparisons of other time-domain feature extractions for better accuracy in the 
machine learning. 
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