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FEATURE EXTRACTION AND CLASSIFIER IN THE DEVELOPMENT OF
EXOSKELETON BASED ON EMG SIGNAL CONTROL: A REVIEW 1Triwiyanto 
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Abstract  Exoskeleton has been widely developed for the purpose of
assistive and rehabilitation. This study's objective is to evaluate
exoskeleton design based on EMG signal. EMG signals can provide an
overview of activity in muscles, moreover the limbs motion can be
represented by EMG signals through the activity. Some researchers have
developed an exoskeleton by utilizing the control process through EMG
signals. The selection of the right feature extraction determines the
success of the classifier. Therefore, in this study, the feature extraction
used in exoskeleton development research is feature extraction in the
time domain (TD) MAV, RMS, IEMG, WL, SSC, and ZC. Furthermore, the
classifier often used to predict the motion of the exoskeleton is an
artificial neural network based on multilayer perceptron with
backpropagation, neural network based on fuzzy, and support vector
machines, because it has better accuracy. Some exoskeleton
development for future research is discussed at the end, which includes,
control system, safety, and compensation. Keyword: EMG, Exoskeleton,
Feature Extraction, Classifier © 2020 by Advance Scientific Research.
This is an open-access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/) DOI:
http://dx.doi.org/10.31838/jcr.07.12. 155 INTRODUCTION Increasing the
number of elderly people will be followed by various problems, one of the
problems faced is the weakening of the body limb function and some
degenerative diseases. In order this community can carry out their social
activities normally, it is necessary to have a device that can help to
carry out these activities. Additionally, stroke is a disease that is the
world's number-three cause of death, after a stroke, 56% of patients will
experience paralysis either total paralysis or partial paralysis. In order the
muscle does not decrease in muscle mass (atrophy), post-stroke patients
must routinely undergo a series of therapies to restore limb function. An
exoskeleton is a metal structure mounted on the outside of an extremity
that has experienced a decrease or malfunction, which aims to
strengthen, increase endurance for the user and rehabilitate. Exoskeleton
have been developed for many purposes for instance: prosthetic devices
[1,16,25,31,32,43- 46], assistive [2,3,6-9,17,19-21,39-42], and
rehabilitation [4,5,10-15,18,37]. Assistive exoskeleton aims to help human
body limb in motion which decreased the function. An assistive device is
mounted in the human body, upper or lower limb. Additionally, a
rehabilitative exoskeleton aims to help therapist and medical doctor to
restore the human limb function which caused by disturbance after a post
stroke or post surgery. Several researchers have developed Exoskeleton
using several methods for detecting motion, including force sensors,
motion sensors and EMG electrodes. EMG signals are chosen as controls
in the exoskeleton because EMG signals can directly describe the
activities that occur in members of body parts. This paper aims to provide
an explanation the scope of the exoskeleton based on EMG signal control
in terms of the process of data acquisition, feature extraction and
classifier. At the end, this paper will describe some applications of
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exoskeleton and future development of exoskeleton. This paper is written
in several sections: the process of EMG signal acquisition, electrode
layout, bio-amplifier and sampling frequency will be discussed in Section
2. Some feature extraction will be addressed in Section 3 to evaluate the
characteristics of the EMG signals. In order to recognize the EMG signals
then a classifier is required, this section will be discussed in Section 4.
Section 5 discusses potential applications and possibilities for future
development. Section 6 presents conclusions and future research. EMG
DATA ACQUISITION EMG signal is a bio-electric signal that is generated
by muscles during contractions, contractions will appear when the body
limb do an activity. EMG signal is a signal that has a random and
stochastic form that has frequency varies from 0 to 500 Hz, with
dominant energy at frequencies between 50 and 150 Hz [2]. EMG has an
amplitude of between 10 uV and 10 mV [2]. It is divided into invasive and
non-invasive approaches, depending on the mechanism of the EMG signal
recording. Invasive is done by using a needle electrode, which is inserted
into the part of the muscle, while the noninvasive method is done by
using surface electrodes, Which is placed on top of the muscle's skin to
be examined. Surface electrodes can use disposable Ag (AgCl) electrodes
commonly used in ECG and EEG signal recording. The latter method is
more widely used in the development of exoskeleton based on EMG signal
control, because it can be done by non-medical personnel or engineer.
This paper will address the noninvasive use of EMG signals as a control
mechanism. Basic configuration, an exoskeleton based on EMG signal
control is shown in Figure 1. This diagram block shows that the system is
comprised of sensor, bio-amplifier, A/D converter, microcomputer system,
feature extraction, classifier, driver motor, and motor. Sensor: Electrode:
Ag(AgCl) Bio-Amplifier: Pre-amplifier Band pass filter Notch filter Summing
amplifier A/D Converter: Built-in ADC Motor servo/DC Microcomputer
system: Driver Motor Computer or Microcontroller Classifier Feature
Extraction (computer program) (computer program) Figure 1. Exoskeleton
based on EMG control Electrode location The electrode location is
determined based on the muscle portion to be registered. Electrodes can
be bipolar or monopolar [2]. The location and number of the electrode
leads depends on the degree of freedom, the part of the body to be
measured and the limb motion. Tang [3] placed three electrodes in three
groups of muscles (anconeus, triceps brachii, biceps brachii, and
brachioradialis) to detect flexion and extension motion. Lenzy [4], Song
[5], Kyrylova [6] and Lalitharatne [7] built an exoskeleton on the upper
limb by inserting the electrodes into the brachii biceps and brachii triceps
muscles. It takes many muscles to reflect the motion in the development
of an exoskeleton with greater degrees of freedom, as Rosen et. al did.
[8]. They developed an exoskeleton with 2 DOF that can detect flexion,
extension, pronation and supination arm movements with leads at the
location of brachialis, biceps brachii, brachoradialis, and triceps Brachii.
Kiguchi suggested a 3-DOF exoskeleton using biceps (lateral and medial
parts), triceps (lateral and medial parts), deltoids (anterior and posterior
parts), pectoral major (clavicular parts), and teres [9]. W-EXOS upper
limb exoskeleton developed by Gopura detects wrist in 3 DOF movements
with leads location at supinator point (SP), extensor carpi radialis brevis
(ECRB), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), flexor 
carpi ulnaris (ECRB), extensor carpi ulnaris (ECU), flexor carpi radialis
(FCR), flexor carpi ulnaris (SPR) FCU) and pronator teres (PT)[10].
Exoskeleton developed by Artemiadis [11], and Loconsole [12] detect the
shoulder and elbow motion through deltoid (anterior), deltoid (posterior),
deltoid (middle), pectoralis major, biceps brachii, brachioradialis, triceps
brachii muscles. Bio-amplifier EMG signals have a small amplitude with a
range of 0.01 mV to 10 mV [2], in order this signal can be processed by a
computer system or microcontroller, it requires a pre amplifier to
strengthen the signal. Bio-amplifier generally consists of 4 parts:
preamplifier, bandpass filter, notch filter and summing amplifier.
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Preamplifier is the main part of the bio-amplifier circuit, which serves to
strengthen the EMG signal and reduce common mode noise, if there are
two differential inputs from the preamp. Bandpass filter functions to pass
EMG signals according to the spectrum characteristics of EMG signals
that reach frequencies from 0 to 500 Hz [2]. The noise generated by the
power line is the biggest noise that interfere the bio- amplifier circuit,
therefore the notch filter 50 Hz circuit is a solution to reduce the noise.
An EMG signal is an oscillating signal resembling the form of an ac signal,
so that it can be processed by the ADC then a summing amplifier is
needed to increase the signal level to the direct current (DC) form.
Several companies have made bio-amplifiers for the purposes of EMG
signal data acquisition, completed with several channels. Bio- amplifier
can also be made with custom as desired, generally using the AD620 or
INA121 instrumentation amplifier. Research conducted by Fleischer used
electrodes with built-in amplifiers (Delsys, Inc. Boston, USA) [13], With a
1000 V / V gain and a 20 and 450 Hz bandpass filter. Loconsole [12]
using g.USBAmp Amplifier amplifier for data acquisition which collected
five channel of EMG signal. Rosen used an EMG amplifier (BIOPAC-
EMG100A) with a gain of 2000-5000 V / V, depending on the subject to
be measured. The measurements of EMG signal was located at the biceps
and triceps points [8]. To strengthen the EMG signal, Lalitharatne uses
an amplifier [MEG-6108, Nihon Koden Co.] [14] in the development of
exoskeleton based on EMG signal control. Several researchers used a
home made bio-amplifier to process EMG signals, Ramos designed an
INA126P instrumentation amplifier with a gain of 805 V / V and a 16-bit
analog input card data acquisition of NI 9205 [15]. The embedded device
implemented in artificial leg by Lin used the instrumentation amplifier
AD620, which processes EMG signals in the frequency range of 10-500 
Hz, with a maximum gain of 100,000 V / V in accordance with the EMG
signal input range of around 50uV-10 mV, to achieve 0- 5V [16]. The
MC68HC11A8 microcontroller based prothetic system built by Patel used a
differential amplifier with a gain of 20,000 V / V. Additionally, 10-3000 Hz
bandpass filter was applied on the EMG signals which collected from
bicep, triceps, quadratus pronator, and supinator muscles [17]. An aided
ARM robot training developed by Song used a custom-made bio-amplifier
that uses instrumentation amplifiers (INA126, Texas Instruments, Dallas,
TX) with 1000 V / V gain and 10-400 Hz bandpass filter [18]. Frequency
sampling In EMG signals recording which using an analog to digital
converter, frequency sampling must meet Nyquist rules, which is a
minimum of two time of maximum frequency. In the data acquisition, the
sampling frequency is done on the microcontroller or computer system
using the timer function. Frequency sampling is set based on the highest 
frequency of the measured EMG signal. Gopura [19] applied a frequency
sampling of 2 kHz to record EMG signal in sixteen lead. On a PCI 6036E 
DAQ (data acquisition) card, National Instruments, Austin, TX, Song
applied a 1000 Hz frequency sampling connected to a device for EMG
signal recording [18]. Kyrylova [6] used a frequency sampling of 1000 Hz
based on Biosignalsplux (Plux) to measure the EMG signal on biceps dan
triceps. Lalitharatne [14] used a 2000 Hz sampling frequency to collect
the sinyal EMG for the elbow dan shoulder angle measurement. Andreasen
[20] used a frequency sampling of 1000 Hz to measure the EMG signal on
biceps. FEATURE EXTRACTION Due to a large amount of data collection
EMG signals can not be analyzed directly for classification purposes in the
TD series. A large number of data representing the EMG signal requires a
feature extraction process. The feature extraction process that is often
developed for the purposes of EMG signal analysis is in the TD, frequency
and wavelet (time-frequency) domains. TD Features Feature extraction in
the TD has advantages in terms of time- consuming data processing and
simple equations. Therefore, some studies on exoskeleton preferred to
use TD feature extraction. The extraction method for the function is
essentially shown in Figure 2. The extraction process sequentially
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comprises the EMG signal raw, the windowing technique (adjacent or
overlap) [21] [22], and the EMG feature (time, frequency or time-
frequency) [23][24]. Bio-amplifier 1 1 Extracting EMG 1 EMG 2 Windowing
2 Time domain 2 Multi channels i adjacent & overlap i Frequency domain
Time-frequency domain i Figure 2. Feature extraction process Several
features extraction in the TD that are often used in exoskeleton research
are as follows. Mean absolute value (MAV) is a method used for the
extraction of EMG signals. In the development of exoskeletons, Kiguchi
[9], Andreasen [20] and Loconsole [12] used MAV as the classifier data.
The MAV equation is shown as follow (1): MAV = N1 ?iN=1| xi | (1) Root
mean square (RMS) is one of the features used very frequently in many
advancements of exoskeletons. Some research on exoskeleton uses this
feature for signal extraction EMG [3], [25], [10], [7], [26], [27], [28],
[1]. With the following mathematical equation, this feature is identical to
the standard deviation system (2). RMS = N1 ?iN=1 xi2 (2) Integrated
EMG reflects the total number of EMG signals in some windows. This
feature is usually used to detect whether an EMG signal is in a
contraction state. Some exoskeleton studies use this feature for the
extraction of EMG signals [4], [28]. Integrated EMG is expressed in
mathematical equations as follows (3): IEMG = ?| xi | N i =1 (3) For
calculating the complexity of EMG signals, waveform length (WL) is used.
WL is the accumulated length of EMG signals in the measured segments.
Some exoskeleton researchers use WL as an extraction feature [8], [25],
[29]. Ding uses the WL feature to find out the elbow joint movement
[30]. Liu uses this feature in the development of multifunctional
prostheses [31]. The WL equation is shown in following equation (4): N
−1 WL = | xi +1 − xi | ? i =1 (4) Sign Slope Change (SSC) is a feature
frequently used to get  EMG signal frequency information. SSC indicates
the number of slopes in sign form. The threshold is used for the noise
reduction behind the EMG signal. Some studies of exoskeletons use this
method to obtain the EMG features [32], [1] (5). N−1 SSC= [f[(xi −xi−1)?
(xi −xi+1)]] ? i= 1 f(x)= ??1,if →x?threshold ?? 0,otherwise ? (5) Zero
Crossing (ZC) is a method for viewing information on the signal frequency
without using the transformation step. ZC is determined according to the
number of signals that cross the zero point. When ZC feature was
applied, the noise behind the EMG signal does not count. Additionally, a
threshold is needed as a minimum amplitude limit. Chan uses the ZC
function as one of the features in the Fuzzy rule, in the creation of
protheses [1]. The mathematical equation for the ZC feature is as follows
(6): N −1 ZC = ?[ f (xi ? xi+1)? | xi − xi+1 | ? threshold i =1 f (x) = ???
1,if → x ? threshold ?? 0,otherwise (6) where 𝑤𝑖 is the EMG signal on 
the-  i, N assign the length of the EMG signal and threshold is to limit the
amplitudo level of signal. Frequency Domain Frequency domain analysis
essentially uses the Fast Fourier Transform method [33][34], That
converts the TD signal to the frequency domain, so that the EMG signal
spectrum band will be known to be processed. The EMG signal analysis,
also used for the assessment of isometric fatigue, is a frequency domain
analysis. The frequency domain characteristics often used are mean
frequency (MNF), mean power frequency (MPF) and median frequency
(MDF). The EMG signal spectrum will undergo a change in isometric
fatigue determination, with the MDF location decreasing. In the study of
exoskeleton based on frequency domain, it is almost no one uses this
domain, because it requires a process of transformation from the TD to
frequency, so it is less precise when used for real time control purposes. 
MDF is a median frequency where the EMG power spectrum is split into
two regions of equal amplitude. It is divided into two regions due to
being half the total power. As explained below, it is measured in two
stages: First, the signal strength in the entire spectrum is summed up,
and divided by two. A frequency at which combined intensity (i.e. all
intense) is selected in the second stage. The MDF equation is shown in
following equation (7): MDF = 12 j=?MMDFPj (7) where, Pj shows the EMG
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power range at frequencies j and M shows the frequency length. The
MNF value is the product of spectrum frequency and amplitude and is
equal to the spectrum sum of all these products as shown in equation
(8). This feature is written as follow (8): ? f j Pj M MNF = j=M1 ? Pj j =1
(8) Where fj describes the EMG power spectrum frequency value at
frequency j, Pj indicates the EMG power spectrum at frequency j and the
frequency spectrum length M. MNP is an EMG frequency spectrum mean
frequency. It is definable as follows (9): ? Pj M MNP = j=1 M (9) Where,
Pj shows the frequency length (M) of the EMG power spectrum at
frequencies j. Time-Frequency Domain The Fast Fourier Transform (FFT)
method decompose only signals in the TD into frequency components, but
this FFT method cannot determine the frequency location at a particular
time. One way to solve this is to use the wavelet method. Wavelet
method is widely used for the purposes of EMG signal analysis to
determine the position of the motion and fatigue state of the muscles
[23][35] but is not used for the exoskeleton control process. The material
related to time-frequency domain can be obtain in some references.
CLASSIFIER The output of the EMG feature was not able to define the
EMG signal pattern following its motion; therefore, a classification process
based on the input of the EMG feature is required. Additionally, some
parameters that are often encountered during the classification process
related to the characteristics of the EMG signal are, electrode position,
sweat and fatigue. These parameters can increase the classification
error, so that those issues must be taken into account in future work.
Some exoskeleton studies use modeling with pattern recognition in the
classifier to estimate the joint angle of the exoskeleton [3] [12] [36]
[27]. The development of exoskeleton by using modeling based on
classifier has weaknesses in terms of complexity in the learning process
and considerable time consumption. Some other researchers who develop
an exoskeleton, without using a classifier, are using the Hill Based method
[7,26,41] and based on the 2nd order low pass filter EMG signal model
[4]. Generally, a standard machine learning was shown in Figure 3 which
consisted of EMG features, machine learning, output, and decoder.
Artificial Neural Network Classifier often used to recognize exoskeleton
motion patterns is the MLP artificial neural network (ANN) using the
backpropagation method in learning process. Tang [3] uses a back
propagation neural network classifier, with 4 input nodes, the hidden
nodes are trial and error with consideration that they are not too big and
not too small because it will affect the error of the classifier and the
speed of the learning process. The ANN performance in modeling the EMG
signal to the exoskeleton angle obtained a high correlation value (R2) of
0.87. The sigmoid transfer function that can be used for ANN learning is
as follows: 𝑤 = 𝑓(∑𝑤𝑖𝑤𝑖) = 1+𝑒−(∑𝑤𝑖𝑤𝑖) 1 (7) where 𝑤 indicates the
output, 𝑤𝑖 shows the input, 𝑤𝑖 defines the weight factor for the input,
hidden and output layer, e is the exponential function dan f() is sigmoid 
transfer function. Training Stage 1 1 EMG 2 Machine Learning 2 Output
Decoder Features i (Learning parameters) i Number of Class to class
motion Figure 3. Standar machine learning procedures Lonconsole [12]
built the Time Delay ANN to predict shoulder and elbow joint angles on
the exoskeleton for rehabilitation. The results of the evaluation of the
application of ANN time delay obtained RMSE performance value = 1.19.
Lee [36]used ANN time delay to predict knee joint in identifying seated to
standing movements, with an RMSE value = 0.02234. ANN- based radials
are one of the ANN methods in the learning process on the network using
Gaussian equations. Wang [27] used radial NN basis to predict elbow
joint, with the best performance obtained RMSE = 0.063. Several
researchers developed ANN to predict joints in the upper limb based on
EMG signal based on various TD feature [27], [28], [30-39]. Fuzzy Fuzzy
logic is a method that used for the purposes of classifying EMG signals
into several classes. Furthermore, fuzzy logic can also be used for control
of the exoskeleton. Research conducted by Taslim, a fuzzy controller was
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built to detect the movements from sitting to standing in the lower limb
knee [38]. Gopura developed an exoskeleton with three DOF motion
through EMG signals with classification using fuzzy rule controller [19].
Neuro Fuzzy Neuro Fuzzy (NF) is a hybrid of neural networks and fuzzy
logic, so it is expected that with this algorithm a system that has the
ability to learn like humans and has the ability to make logical decisions.
Neuro fuzzy algorithm is also widely applied to the exoskeleton by using
the extraction of EMG signal features as input. Using the Neuro Fuzzy
algorithm, Kiguchi developed the upper limb exoskeleton with 4 DOF
motions, 3 DOF on the shoulders and 1 DOF on the elbow [9]. Upper limb
human assist developed by Gopura is used to control 3 DOF movements
based on neuro fuzzy control [10]. Neuro fuzzy algorithm, in addition to
the control needs of the exoskeleton, can also be modified in the network
weights so that it can be used as a compensator for other parameters,
as developed by Lalitharatne [39]. When a muscle fatigue occurs, the
EMG signal will change both in amplitude and frequency. Additionally, the
median frequency will be shift to the lower frequency. This phenomenon
can be used to compensate for the neuro fuzzy weights during the
control process. SVM Support Vector Machines (SVM) are techniques for
classification that optimize margins between classes. Khokhar [25] uses
the SVM method to recognize 13 classes of movement on the wrist
exoskeleton, with the highest accuracy of 99.47%. SVM effectiveness
testing was also carried out by Yoshikawa [40] for the prediction of joint
angles on the robot hand, with the highest accuracy of 95.7%. Several
other researchers [43- 46] used the SVM method for the classification
process of movement. POTENSIAL APPLICATION Studies related to the
exoskeleton have been developing in the past 15 years, along with the
needs in the community. Various exoskeleton models have been
developed, starting from the simplest exoskeleton model with an ON-OFF
control system, non pattern recognition to the exoskeleton with
embedded pattern recognition [42] [43]. From the results of the review
paper, this still shows that there are still a number of possible
applications of exoskeleton associated with control, safety and
compensation systems. The development of the exoskeleton is still wide
open for further research, especially the exoskeleton for post-stroke or
post-operative therapy needs. In some previous studies the subjects
tested were generally using humans in a healthy or normal condition, in
subsequent studies it would be better if the trials were carried out in
post-stroke patients. The exoskeleton is expected to be able to respond
and follow movements according to human intention so that in
subsequent studies it is expected to improve the control system algorithm
so that the exoskeleton can follow the speed and acceleration of the
user. This can be added gyroscope sensor and accelerometer. The focus
of the area that some previous researchers worked on was the
development of control systems and the recognition of EMG signal
patterns. Safety is one thing that is very important in every use of
instrumentation equipment, especially those related to patients directly,
so that the development of the exoskeleton is expected to be able to
ensure patient safety in the event of a malfunction. One of the sensors
that can be used directly for safety purposes is by utilizing EOG
(electrooculography) signals through electrode leads. So that in patients
after stroke still have the ability to move the eyeball for the purpose of
stopping the operation of the exoskeleton, if the patient feels
uncomfortable. EMG signals have very complex characteristics and
depend on several parameters, changes in these parameters will affect
the characteristics of the amplitude and frequency. These parameters
include, position shift, change in distance and orientation of the electrode
from its original position. Sweat is an element consisting of salt which can
also affect the resistance of the skin, so that it will cause resistance
between the electrodes to change which can impact the characteristic
EMG signal amplitude. Long use of exoskeleton can induce patient’s
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tiredness. Some previous researchers reported that fatigue would affect
EMG signal characteristics. The amplitude will increase and the frequency
will decrease [44] [45]. These parameters are still wide open for
exploration on the development of the exoskeleton. CONCLUSION EMG
signals are bio-electric that are generated by muscles when they do
muscle contraction. Through spinal cord neural system, the brain
instructs the limbs to do a motion. EMG signals carry a lot of information
related to limb movements. The use of EMG signals for control purposes is
very affective because it will reflect human intention. Feature extraction
in the TD is preferred by some researchers because it is an uncomplicated
algorithm and less computational time. Therefore, in order to control
exoskeleton in real time, it can work better. EMG signal modeling for
estimation of the exoskeleton angle can be done by several methods, one
method that is often used is to use the ANN classifier and Fuzzy NN.
Research that can be developed in the future is related to natural
control, safety and compensation. There are many physical parameters
on muscle need to address in developing a compensation method for
instance muscle fatigue, sweat and artifact noise. REFERENCE 1. F. H. Y.
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